
Benthic TMDL for Toms Brook

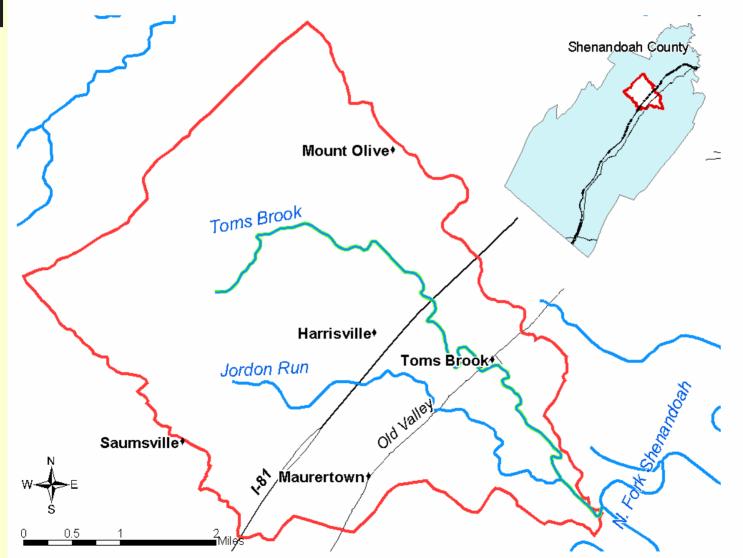
Final Public Meeting

January 13, 2004

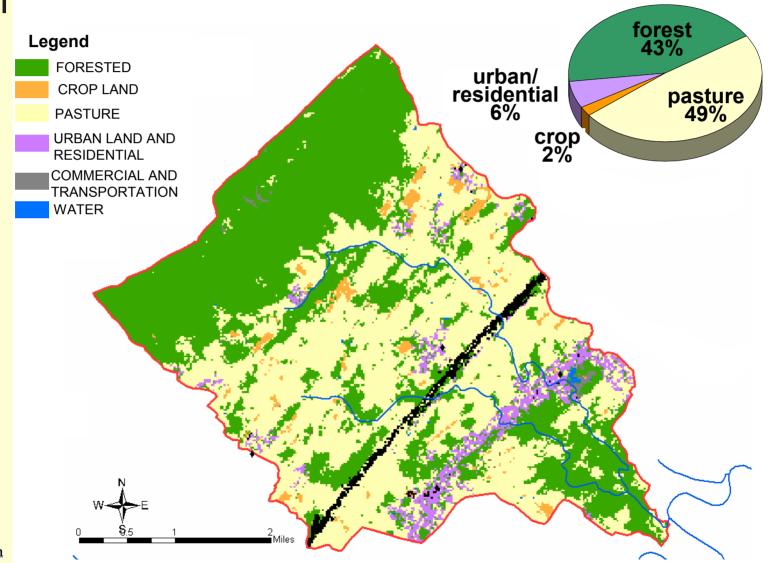
Institute for TMDL Studies at Virginia Tech

Institute Personnel

- Brian Benham
- Kevin Brannan
- Theo Dillaha
- Saied Mostaghimi
- Rachel Wagner
- Jeff Wynn
- Gene Yagow
- Rebecca Zeckoski

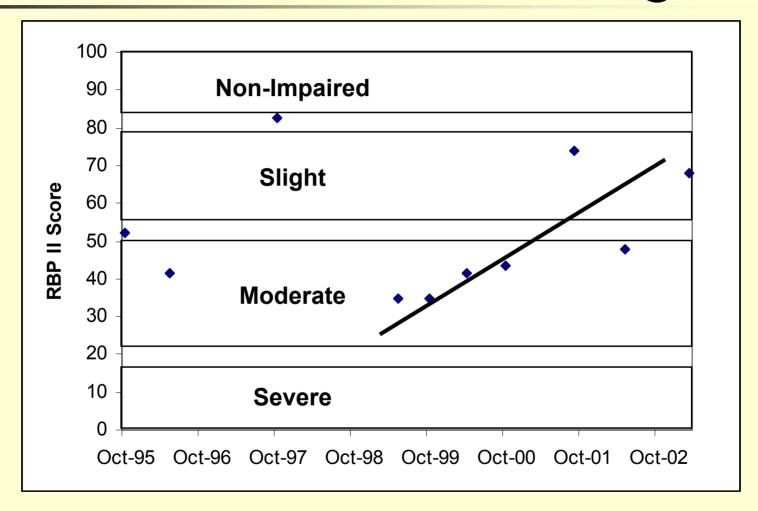

TMDL Study Overview

- Watershed location
- Benthic impairment
- Stressor analysis (What is the pollutant?)
- Identify and quantify pollutant sources
- Reference Watershed Approach
- Benthic TMDLs based on Sediment
- Allocation Scenarios


Watershed Location

Major Land Uses Toms Brook Watershed

Impairment


Toms Brook has a benthic impairment.

This means that the stream does not meet state standards for biological health.

Toms Brook RBP II Ratings

TMDL Listing if 2 or more ratings of "Moderate" or 1 rating of "Severe" during Assessment Period

Benthic Stressor Analysis Procedure

- Identify potential stressors
- Collect and analyze available data for each potential stressor
- Select the most probable stressor(s)
- Develop the TMDL for the selected stressor(s)

Stressors Considered

- Sediment
- Organic Matter
- pH

- Toxics
- Nutrients
- Temperature

Possible Stressors

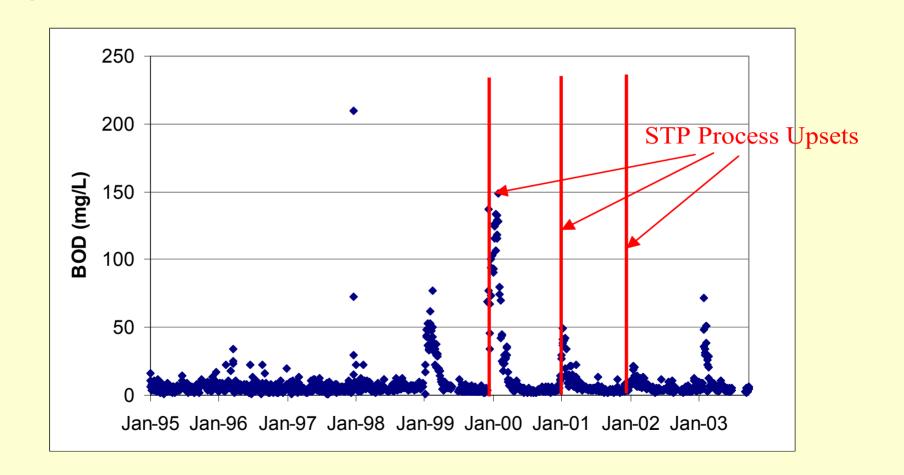
- Sediment
- Organic Matter
- pH

- Toxics
- Nutrients
- Temperature

Possible Stressors

- Sediment
- Organic Matter
- 0

- Toxics
- Nutrients


Potential Point Source Problems

Toms Brook-Mauertown STP

Toms Brook-Mauertown STP Process Upsets

Possible Causes of STP Upsets

- Inadequate capacity overloading
- Toxic loadings
- Operational problems

Results of STP Investigation

- Upsets appear to be the result of infrequent shock loadings from the Bowman Apple Products Co.
- Toxicity? 3 negative tests since August
- DEQ and STP working to improve operator training
- No STP upset so far this winter!
- STP in compliance with operating permit.

Sediment as a Stressor

- Moderate to low embeddedness scores
- Recent precipitous drop in %Haptobenthos scores
- Larger TSS concentrations during storm runoff indicated by a few storm samples
- Preliminary modeling showed sediment loads higher than several potential reference watersheds
- Recent dominant species Elmidae and Psephenidae not tolerant of high sediment concentrations CON
- Overall habitat scores show consistent increasing trend
- Ambient TSS concentrations at or below MDL of 3 mg/L

Toxics as a Stressor

- 2 metals exceeded consensus-based PECs in 1992, but not in 1996
- Shredder populations at 0 or low levels
- STP-reported process upsets and high ammonia concentrations in Dec-Jan 1999-2001, possibly others in previous years
- No DEQ-reported chronic or acute ammonia violations
- No consistent pattern between STP process upsets and expected decreases in RBP II scores for samples taken in the following spring

Organics as a Stressor

- High BOD loads accompanying STP process upsets
- Dominance by Chironomidae and Hydropsychidae in 3 samples (1996-1999) and by Asellidae in 2002, that indicate an altered benthic community
- Moderate MFBI metric scores

PRO

- DEQ-reported BOD concentrations at or below MDL of 2 mg/L
- Ambient DO all above minimum WQS of 5 mg/L
- Dilution of STP effluent in Toms Brook by minimum factor of 20 in 2003
- STP-reported effluent DO all above WQS

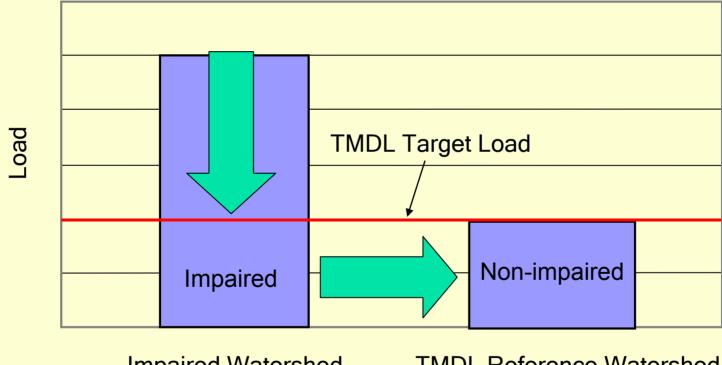
Nutrients as a Stressor

- Dominance of Hydropsychidae and Chironimidae
- Moderate MFBI scores
- Average nutrient concentrations sufficient for eutrophic growth

- Only 1 monitored exceedence of TP "threatened" criteria
- Generally good riparian canopy decreases eutrophication potential
- Diurnal DO tests in 2002 and 2003 showed no DO violations - indicating non-eutrophic conditions

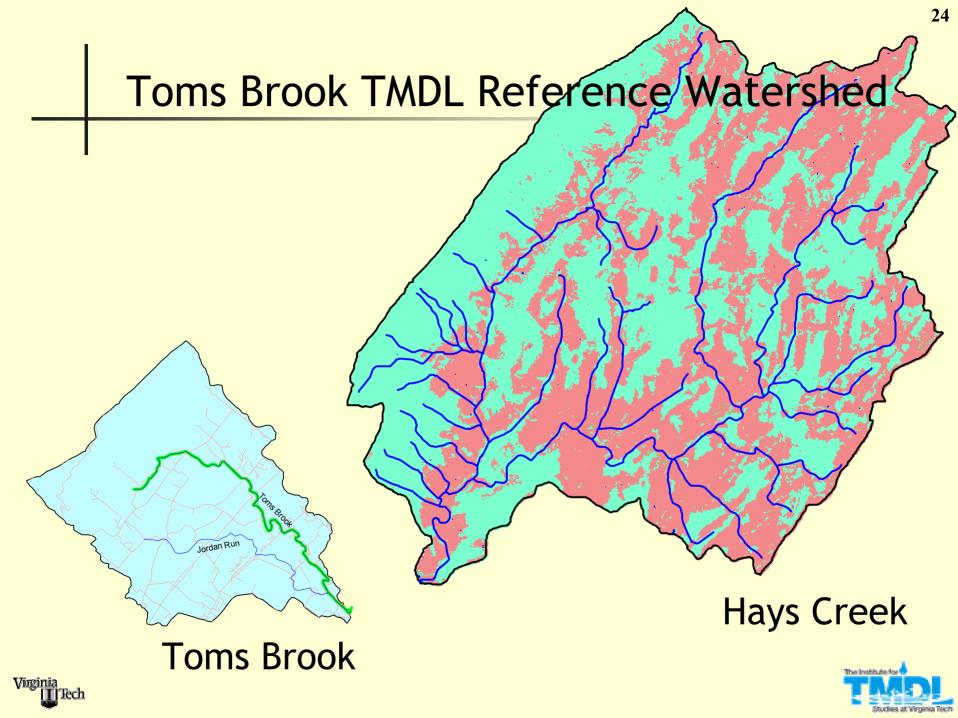
Sediment = Most Probable Stressor

- Impacts from three of the possible stressors nutrients, organic matter, and sediment - are probably inter-related; toxics - historical.
- Best management practices employed to control sediment would also decrease nutrient and organics loadings.
- STP appears to have identified and controlled the source of the cold weather process upsets and associated loads of organics and ammonia.
- The ultimate criteria for judging the success of the TMDL will be the restoration of the benthic community itself - staged implementation.


Reference Watershed Approach

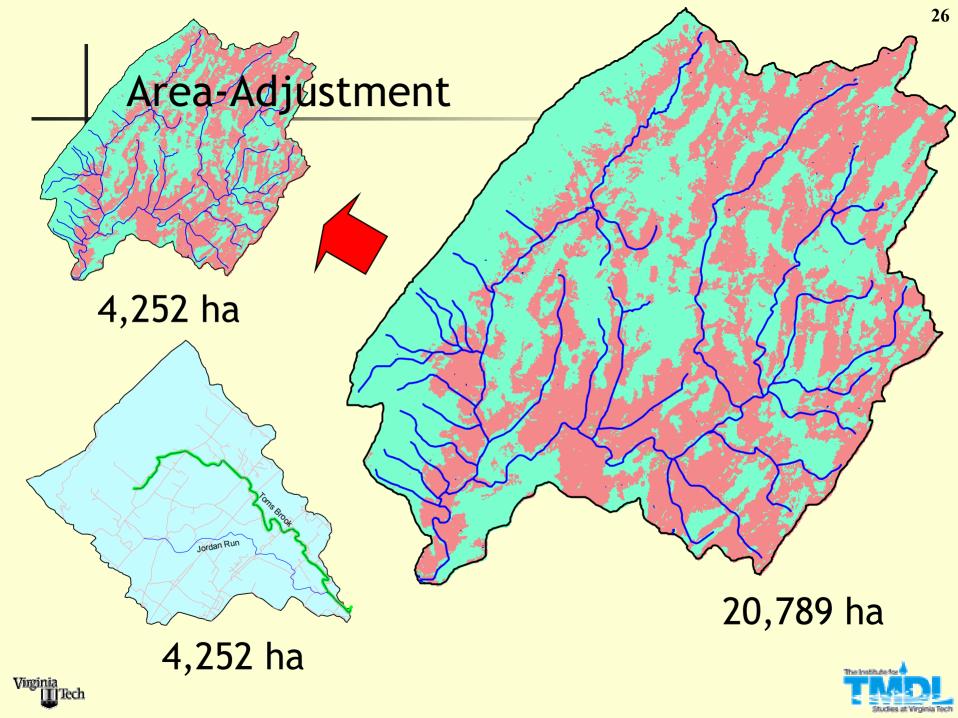
- Used in place of a numeric standard
- Uses a TMDL Reference Watershed
 - Has a healthy benthic community (non-impaired)
 - Similar characteristics to impaired watershed
- Defines the Target TMDL Sediment Load
 - TMDL Reference Watershed is area-adjusted to that of the impaired watershed
 - Existing conditions
 - Modeled load from TMDL Reference Watershed = TMDL Target Load

Example Benthic TMDL


Impaired Watershed

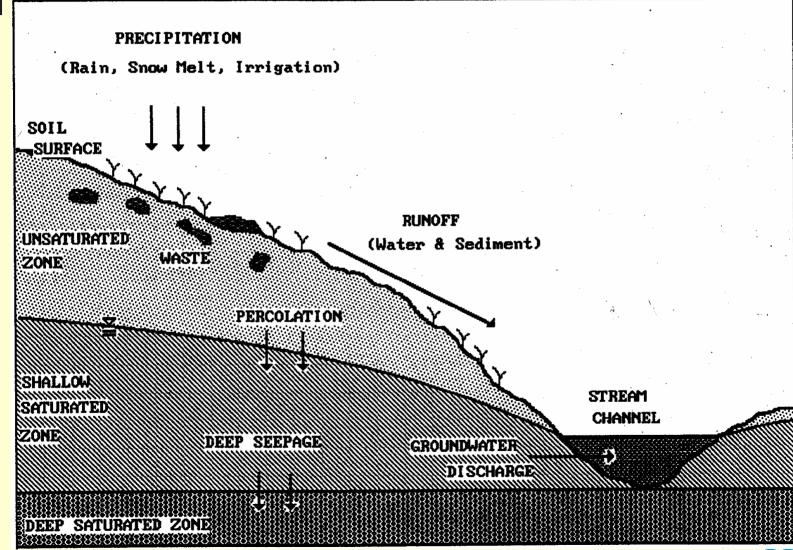
TMDL Reference Watershed

Reducing load in the impaired watershed to the target TMDL load is expected to restore the benthic community



What is an Area Adjusted Watershed?

- Reduce/increase each source category (TMDL reference watershed)
- Proportional to the ratio of watershed areas
- Comparison of loads is then from equal areas

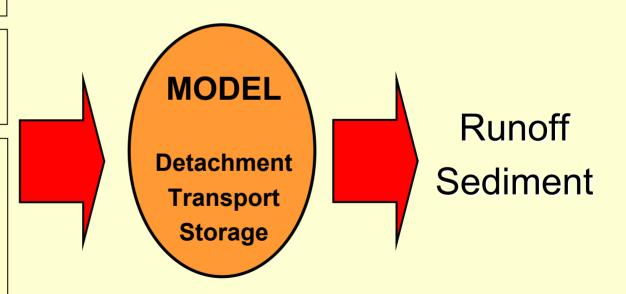


The GWLF Model

Generalized Watershed Loading Functions

The Modeling Process

Define Inputs


- Model defines relationships
- GenerateOutputs

Weather

Watershed Characteristics

Pollutant Sources

Type
Amount
Distribution

Sediment Sources

- Impervious area wash-off
- Soil erosion

- VPDES point sources
- Municipal Separate Storm Sewer Systems (MS4)
- Channel erosion

Modeling Subwatersheds

Toms Brook Benthic TMDL

Existing Sediment Load - Toms Brook

Toms	Brook	Area-adjusted Hays Creek		
(t/yr)	(t/ha)	(t/yr)	(t/ha)	
1,974.2	32.7	325.1	26.4	
466.3	1.8	1,015.0	19.1	
2,007.8	0.2	3,325.1	0.3	
316.9	0.0	196.9	0.0	
35.4	2.0	0.9	0.3	
40.8	3.4	1.0	0.4	
259.5		2.0		
2.4		0.0		
5,103.4		4,866.0		
Target Sediment TMDL Load =				
10% MOS =				
Load for Allocation =				
	(t/yr) 1,974.2 466.3 2,007.8 316.9 35.4 40.8 259.5 2.4 5,103.4 ediment TM	1,974.2 32.7 466.3 1.8 2,007.8 0.2 316.9 0.0 35.4 2.0 40.8 3.4 259.5 2.4 5,103.4 ediment TMDL Load = 10% MOS =	Toms Brook Hays (t/yr) (t/ha) (t/yr) 1,974.2 32.7 325.1 466.3 1.8 1,015.0 2,007.8 0.2 3,325.1 316.9 0.0 196.9 35.4 2.0 0.9 40.8 3.4 1.0 259.5 2.0 2.4 0.0 5,103.4 4,866.0 4,866.0 4,866.0 4866.0	

Target TMDL Sediment Load

t = metric ton = 1.102 tons

Permitted Sediment Sources

		Permitted TSS Loads					
		Drainage	Modeled	Permitted	Permitted	Permitted	Permitted
		Area	Runoff	Average Load	daily flow	Ave Conc	Annual Load
PS Discharger	VPDES_ID	(acres)	(cm/yr)	(kg/day)	(MGD)	(mg/L)	(t/yr)
Toms Brook STP	VA0061549				0.189	30	7.834
Industri	Industrial Stormwater						
RediMix Concrete	VAG110076	0.43	36.38			60	0.038
SFH Ge	eneral Permits						
	VAG401100				0.001	30	0.041
	VAG401123				0.001	30	0.041
	VAG401469				0.001	30	0.041
	VAG401368				0.001	30	0.041
	VAG401355				0.001	30	0.041
	VAG401427				0.001	30	0.041
Watershed Total					8.121		

Toms Brook TMDL Sediment Load

TMDL = WLA + LA + MOS

- TMDL = total allowable daily load
- WLA = waste load allocation (point sources)
- LA = load allocation (non-point sources)
- MOS = margin of safety (10% of TMDL)

TMDL (t/yr)	WLA (t/yr)	LA (t/yr)	MOS (t/yr)	
4,866.0	8.1	4,371.3	486.6	
	VA0061549 = 7.83			
	VAG110076 = 0.04			
	SFH General Permits = 0.25			

TMDL - MOS = Load for Allocation = 4,379.4 t/yr

Sediment Allocation Strategies

- 11 Land Uses aggregated to 3 Source categories:
 - Agriculture
 - Urban
 - Forestry
- In addition to Channel Erosion and Point Sources
- No reductions from permitted point sources

Sediment Allocation Strategies

Reduction Scenarios

- Equal percentage reductions taken from all four categories
- 2. Equal percentage reductions from 3 major categories
- 3. Larger percentage reduction taken from the largest load category Agriculture, less from forestry and channel erosion

Toms Brook TMDL Allocations

	Reference	Existing	Toms Brook TMDL Sediment Load Allocations					
Source	Hays Creek	Toms Brook	TMDL Alternative 1		TMDL Alternative 2		TMDL Alternative 3	
Category	(t/yr)	(t/yr)	(% reduction)	(t/yr)	(% reduction)	(t/yr)	(% reduction)	(t/yr)
Agriculture	4,665.2	4,448.4	14.3%	3,812.1	14.5%	3,802.4	15.1%	3,776.4
Urban	1.9	76.2	14.3%	65.3	0%	76.2	0%	76.2
Forestry	196.9	316.9	14.3%	271.6	14.5%	270.9	10.0%	285.2
Channel Erosion	2.0	259.5	14.3%	222.4	14.5%	221.8	10.0%	233.5
Point Sources	0.0	2.4	0%	8.1	0%	8.1	0%	8.1
Total	4,866.0	5,103.4		4,379.4		4,379.4		4,379.4

What's Next?

Draft TMDL Report Website:

www.deq.state.va.us/tmdl/drftmdls/tomsbrk.pdf

- 30 day public comment
- Make appropriate changes
- Submit report to EPA for approval
- Develop an implementation plan

Acknowledgements

- Toms Brook STP Rodney McClain,
 William Johnson
- The Opequon Watershed Jim Lawrence
- Friends of the North Fork of the Shenandoah River – Pat Maier
- Shenandoah University Karen Anderson
- Lord Fairfax SWCD
- DEQ-VRO Bill van Wart, Larry Hough

Contact Information

For Questions and Comments, please contact:

Theo Dillaha

310 Seitz Hall

Blacksburg, Virginia 24061-0303

Phone: (540) 231-6813

Fax: (540) 231-3199

Email: dillaha@vt.edu

